”工欲善其事,必先利其器。“—孔子《论语.录灵公》
首页 > 编程 > 掌握图像分割:传统技术如何在数字时代仍然大放异彩

掌握图像分割:传统技术如何在数字时代仍然大放异彩

发布于2024-11-08
浏览:298

介绍

图像分割是计算机视觉中最基本的过程之一,它允许系统分解和分析图像内的各个区域。无论您是在处理对象识别、医学成像还是自动驾驶,分割都可以将图像分解为有意义的部分。

尽管深度学习模型在这项任务中越来越受欢迎,但数字图像处理中的传统技术仍然强大且实用。本文回顾的方法包括阈值处理、边缘检测、基于区域和通过实施公认的细胞图像分析数据集(MIVIA HEp-2 图像数据集)进行聚类。

MIVIA HEp-2 图像数据集

MIVIA HEp-2 图像数据集是一组细胞图片,用于分析 HEp-2 细胞中的抗核抗体 (ANA) 模式。它由通过荧光显微镜拍摄的二维图片组成。这使得它非常适合分割任务,最重要的是那些与医学图像分析有关的任务,其中细胞区域检测是最重要的。

现在,让我们继续讨论用于处理这些图像的分割技术,根据 F1 分数比较它们的性能。


1. 阈值分割

阈值处理是根据像素强度将灰度图像转换为二值图像的过程。在 MIVIA HEp-2 数据集中,此过程对于从背景中提取细胞非常有用。它在很大程度上是简单有效的,特别是使用大津方法,因为它会自动计算最佳阈值。

Otsu 的方法 是一种自动阈值方法,它试图找到最佳阈值以产生最小的类内方差,从而分离两个类:前景(细胞)和背景。该方法检查图像直方图并计算完美阈值,其中每个类别中的像素强度方差的总和最小化。

# Thresholding Segmentation
def thresholding(img):
    # Convert image to grayscale
    gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

    # Apply Otsu's thresholding
    _, thresh = cv.threshold(gray, 0, 255, cv.THRESH_BINARY   cv.THRESH_OTSU)

    return thresh

Mastering Image Segmentation: How Traditional Techniques Still Shine in the Digital Age


2. 边缘检测分割

边缘检测涉及识别对象或区域的边界,例如 MIVIA HEp-2 数据集中的细胞边缘。在用于检测突然强度变化的许多可用方法中,Canny 边缘检测器 是最好的,因此也是最适合用于检测细胞边界的方法。

Canny 边缘检测器 是一种多阶段算法,可以通过检测强度梯度较强的区域来检测边缘。该过程包括使用高斯滤波器进行平滑、计算强度梯度、应用非极大值抑制来消除寄生响应,以及最终的双阈值操作以仅保留显着边缘。

# Edge Detection Segmentation
def edge_detection(img):
    # Convert image to grayscale
    gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

    # Apply Gaussian blur
    gray = cv.GaussianBlur(gray, (3, 3), 0)

    # Calculate lower and upper thresholds for Canny edge detection
    sigma = 0.33
    v = np.median(gray)
    lower = int(max(0, (1.0 - sigma) * v))
    upper = int(min(255, (1.0   sigma) * v))

    # Apply Canny edge detection
    edges = cv.Canny(gray, lower, upper)

    # Dilate the edges to fill gaps
    kernel = np.ones((5, 5), np.uint8)
    dilated_edges = cv.dilate(edges, kernel, iterations=2)

    # Clean the edges using morphological opening
    cleaned_edges = cv.morphologyEx(dilated_edges, cv.MORPH_OPEN, kernel, iterations=1)

    # Find connected components and filter out small components
    num_labels, labels, stats, _ = cv.connectedComponentsWithStats(
        cleaned_edges, connectivity=8
    )
    min_size = 500
    filtered_mask = np.zeros_like(cleaned_edges)
    for i in range(1, num_labels):
        if stats[i, cv.CC_STAT_AREA] >= min_size:
            filtered_mask[labels == i] = 255

    # Find contours of the filtered mask
    contours, _ = cv.findContours(
        filtered_mask, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE
    )

    # Create a filled mask using the contours
    filled_mask = np.zeros_like(gray)
    cv.drawContours(filled_mask, contours, -1, (255), thickness=cv.FILLED)

    # Perform morphological closing to fill holes
    final_filled_image = cv.morphologyEx(
        filled_mask, cv.MORPH_CLOSE, kernel, iterations=2
    )

    # Dilate the final filled image to smooth the edges
    final_filled_image = cv.dilate(final_filled_image, kernel, iterations=1)

    return final_filled_image

Mastering Image Segmentation: How Traditional Techniques Still Shine in the Digital Age


3. 基于区域的分割

基于区域的分割根据某些标准(例如强度或颜色)将相似的像素分组到区域中。 分水岭分割技术可用于帮助分割 HEp-2 细胞图像,以便能够检测代表细胞的那些区域;它将像素强度视为地形表面并勾勒出区分区域的轮廓。

分水岭分割将像素的强度视为地形表面。该算法识别“盆地”,在其中识别局部最小值,然后逐渐淹没这些盆地以扩大不同的区域。当人们想要分离触摸物体时(例如显微图像中的细胞),这种技术非常有用,但它可能对噪声敏感。该过程可以通过标记来指导,并且通常可以减少过度分割。

# Region-Based Segmentation
def region_based(img):
    # Convert image to grayscale
    gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

    # Apply Otsu's thresholding
    _, thresh = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV   cv.THRESH_OTSU)

    # Apply morphological opening to remove noise
    kernel = np.ones((3, 3), np.uint8)
    opening = cv.morphologyEx(thresh, cv.MORPH_OPEN, kernel, iterations=2)

    # Dilate the opening to get the background
    sure_bg = cv.dilate(opening, kernel, iterations=3)

    # Calculate the distance transform
    dist_transform = cv.distanceTransform(opening, cv.DIST_L2, 5)

    # Threshold the distance transform to get the foreground
    _, sure_fg = cv.threshold(dist_transform, 0.2 * dist_transform.max(), 255, 0)
    sure_fg = np.uint8(sure_fg)

    # Find the unknown region
    unknown = cv.subtract(sure_bg, sure_fg)

    # Label the markers for watershed algorithm
    _, markers = cv.connectedComponents(sure_fg)
    markers = markers   1
    markers[unknown == 255] = 0

    # Apply watershed algorithm
    markers = cv.watershed(img, markers)

    # Create a mask for the segmented region
    mask = np.zeros_like(gray, dtype=np.uint8)
    mask[markers == 1] = 255

    return mask

Mastering Image Segmentation: How Traditional Techniques Still Shine in the Digital Age


4. 基于聚类的分割

诸如K-Means之类的聚类技术倾向于将像素分组到相似的聚类中,当想要在多色或复杂环境中分割细胞时,这种方法效果很好,如 HEp-2 细胞图像中所示。从根本上讲,这可以代表不同的类别,例如细胞区域与背景。

K-means 是一种基于颜色或强度的像素相似性对图像进行聚类的无监督学习算法。该算法随机选择K个质心,将每个像素分配给最近的质心,并迭代更新质心直至收敛。它对于分割具有多个彼此非常不同的感兴趣区域的图像特别有效。

# Clustering Segmentation
def clustering(img):
    # Convert image to grayscale
    gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

    # Reshape the image
    Z = gray.reshape((-1, 3))
    Z = np.float32(Z)

    # Define the criteria for k-means clustering
    criteria = (cv.TERM_CRITERIA_EPS   cv.TERM_CRITERIA_MAX_ITER, 10, 1.0)

    # Set the number of clusters
    K = 2

    # Perform k-means clustering
    _, label, center = cv.kmeans(Z, K, None, criteria, 10, cv.KMEANS_RANDOM_CENTERS)

    # Convert the center values to uint8
    center = np.uint8(center)

    # Reshape the result
    res = center[label.flatten()]
    res = res.reshape((gray.shape))

    # Apply thresholding to the result
    _, res = cv.threshold(res, 0, 255, cv.THRESH_BINARY   cv.THRESH_OTSU)

    return res

Mastering Image Segmentation: How Traditional Techniques Still Shine in the Digital Age


使用 F1 分数评估技术

F1 分数 是一种将精度和召回率结合在一起的度量,用于将预测分割图像与地面真实图像进行比较。它是精度和召回率的调和平均值,在数据高度不平衡的情况下非常有用,例如在医学成像数据集中。

我们通过展平地面实况和分割图像并计算加权 F1 分数来计算每种分割方法的 F1 分数。

def calculate_f1_score(ground_image, segmented_image):
    ground_image = ground_image.flatten()
    segmented_image = segmented_image.flatten()
    return f1_score(ground_image, segmented_image, average="weighted")

然后我们使用简单的条形图可视化不同方法的 F1 分数:

Mastering Image Segmentation: How Traditional Techniques Still Shine in the Digital Age


结论

尽管最近出现了许多图像分割方法,但阈值处理、边缘检测、基于区域的方法和聚类等传统分割技术在应用于 MIVIA HEp-2 图像数据集等数据集时非常有用。

每种方法都有其优点:

  • 阈值适用于简单的二进制分割。
  • 边缘检测是边界检测的理想技术。
  • 基于区域的分割对于将连接的组件与其邻居分离非常有用。
  • 聚类方法非常适合多区域分割任务。

通过使用 F1 分数评估这些方法,我们了解了每个模型的权衡。这些方法可能不像最新的深度学习模型中开发的那么复杂,但它们仍然快速、可解释且可在广泛的应用中使用。


感谢您的阅读!我希望对传统图像分割技术的探索能够启发您的下一个项目。欢迎在下面的评论中分享您的想法和经验!

版本声明 本文转载于:https://dev.to/ahmedmbutt/mastering-image-segmentation-how-traditional-techniques-still-shine-in-the-digital-age-36fa?1如有侵犯,请联系[email protected]删除
最新教程 更多>
  • 如何从Python中的字符串中删除表情符号:固定常见错误的初学者指南?
    如何从Python中的字符串中删除表情符号:固定常见错误的初学者指南?
    从python import codecs import codecs import codecs 导入 text = codecs.decode('这狗\ u0001f602'.encode('utf-8'),'utf-8') 印刷(文字)#带有...
    编程 发布于2025-07-14
  • C++成员函数指针正确传递方法
    C++成员函数指针正确传递方法
    如何将成员函数置于c [&& && && && && && && && && && &&&&&&&&&&&&&&&&&&&&&&&华仪的函数时,在接受成员函数指针的函数时,要在函数上既要提供指针又可以提供指针和指针到函数的函数。需要具有一定签名的功能指针。要通过成员函数,您需要同时提供对象指针(此...
    编程 发布于2025-07-14
  • 为什么PYTZ最初显示出意外的时区偏移?
    为什么PYTZ最初显示出意外的时区偏移?
    与pytz 最初从pytz获得特定的偏移。例如,亚洲/hong_kong最初显示一个七个小时37分钟的偏移: 差异源利用本地化将时区分配给日期,使用了适当的时区名称和偏移量。但是,直接使用DateTime构造器分配时区不允许进行正确的调整。 example pytz.timezone(...
    编程 发布于2025-07-14
  • 如何在Java的全屏独家模式下处理用户输入?
    如何在Java的全屏独家模式下处理用户输入?
    Handling User Input in Full Screen Exclusive Mode in JavaIntroductionWhen running a Java application in full screen exclusive mode, the usual event ha...
    编程 发布于2025-07-14
  • 如何正确使用与PDO参数的查询一样?
    如何正确使用与PDO参数的查询一样?
    在pdo 中使用类似QUERIES在PDO中的Queries时,您可能会遇到类似疑问中描述的问题:此查询也可能不会返回结果,即使$ var1和$ var2包含有效的搜索词。错误在于不正确包含%符号。通过将变量包含在$ params数组中的%符号中,您确保将%字符正确替换到查询中。没有此修改,PDO...
    编程 发布于2025-07-14
  • 表单刷新后如何防止重复提交?
    表单刷新后如何防止重复提交?
    在Web开发中预防重复提交 在表格提交后刷新页面时,遇到重复提交的问题是常见的。要解决这个问题,请考虑以下方法: 想象一下具有这样的代码段,看起来像这样的代码段:)){ //数据库操作... 回声“操作完成”; 死(); } ?> ...
    编程 发布于2025-07-14
  • 为什么Microsoft Visual C ++无法正确实现两台模板的实例?
    为什么Microsoft Visual C ++无法正确实现两台模板的实例?
    在Microsoft Visual C 中,Microsoft consions用户strate strate strate strate strate strate strate strate strate strate strate strate strate strate strate st...
    编程 发布于2025-07-14
  • Java数组中元素位置查找技巧
    Java数组中元素位置查找技巧
    在Java数组中检索元素的位置 利用Java的反射API将数组转换为列表中,允许您使用indexof方法。 (primitives)(链接到Mishax的解决方案) 用于排序阵列的数组此方法此方法返回元素的索引,如果发现了元素的索引,或一个负值,指示应放置元素的插入点。
    编程 发布于2025-07-14
  • 找到最大计数时,如何解决mySQL中的“组函数\”错误的“无效使用”?
    找到最大计数时,如何解决mySQL中的“组函数\”错误的“无效使用”?
    如何在mySQL中使用mySql 检索最大计数,您可能会遇到一个问题,您可能会在尝试使用以下命令:理解错误正确找到由名称列分组的值的最大计数,请使用以下修改后的查询: 计数(*)为c 来自EMP1 按名称组 c desc订购 限制1 查询说明 select语句提取名称列和每个名称...
    编程 发布于2025-07-14
  • 如何限制动态大小的父元素中元素的滚动范围?
    如何限制动态大小的父元素中元素的滚动范围?
    在交互式接口中实现垂直滚动元素的CSS高度限制问题:考虑一个布局,其中我们具有与用户垂直滚动一起移动的可滚动地图div,同时与固定的固定sidebar保持一致。但是,地图的滚动无限期扩展,超过了视口的高度,阻止用户访问页面页脚。$("#map").css({ marginT...
    编程 发布于2025-07-14
  • \“(1)vs.(;;):编译器优化是否消除了性能差异?\”
    \“(1)vs.(;;):编译器优化是否消除了性能差异?\”
    答案: 在大多数现代编译器中,while(1)和(1)和(;;)之间没有性能差异。编译器: perl: 1 输入 - > 2 2 NextState(Main 2 -E:1)V-> 3 9 Leaveloop VK/2-> A 3 toterloop(next-> 8 last-> 9 ...
    编程 发布于2025-07-14
  • Python高效去除文本中HTML标签方法
    Python高效去除文本中HTML标签方法
    在Python中剥离HTML标签,以获取原始的文本表示Achieving Text-Only Extraction with Python's MLStripperTo streamline the stripping process, the Python standard librar...
    编程 发布于2025-07-14
  • 如何使用Python理解有效地创建字典?
    如何使用Python理解有效地创建字典?
    在python中,词典综合提供了一种生成新词典的简洁方法。尽管它们与列表综合相似,但存在一些显着差异。与问题所暗示的不同,您无法为钥匙创建字典理解。您必须明确指定键和值。 For example:d = {n: n**2 for n in range(5)}This creates a dicti...
    编程 发布于2025-07-14
  • 为什么我在Silverlight Linq查询中获得“无法找到查询模式的实现”错误?
    为什么我在Silverlight Linq查询中获得“无法找到查询模式的实现”错误?
    查询模式实现缺失:解决“无法找到”错误在银光应用程序中,尝试使用LINQ建立错误的数据库连接的尝试,无法找到以查询模式的实现。”当省略LINQ名称空间或查询类型缺少IEnumerable 实现时,通常会发生此错误。 解决问题来验证该类型的质量是至关重要的。在此特定实例中,tblpersoon可能需...
    编程 发布于2025-07-14
  • 在程序退出之前,我需要在C ++中明确删除堆的堆分配吗?
    在程序退出之前,我需要在C ++中明确删除堆的堆分配吗?
    在C中的显式删除 在C中的动态内存分配时,开发人员通常会想知道是否有必要在heap-procal extrable exit exit上进行手动调用“ delete”操作员,但开发人员通常会想知道是否需要手动调用“ delete”操作员。本文深入研究了这个主题。 在C主函数中,使用了动态分配变量(H...
    编程 发布于2025-07-14

免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。

Copyright© 2022 湘ICP备2022001581号-3